organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Wei Chen,^{a,b} Bao-Hong Hou,^a Li-Na Zhou,^a Jing-Kang Wang^a* and Hong Li^a

^aThe State Research Centre of Industrialization for Crystallization Technology, Tianjin University, Tianjin 300072, People's Republic of China, and ^bTianjin Economic and Technological Development Area, Tianjin, People's Republic of China

Correspondence e-mail: srcict@tju.edu.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.060 wR factor = 0.201 Data-to-parameter ratio = 20.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1,4-Bis(phenylsulfanyl)butane

The title compound, $C_{16}H_{18}S_2$, crystallizes with two halfmolecules in the asymmetric unit. In each independent molecule, there is a centre of inversion at the mid-point of the central C–C bond. Each molecule, excluding H atoms, is roughly planar and adopts an all-*anti* conformation. The dihedral angles between the phenyl rings and backbone chain are 19.5 (4) and 17.8 (4)°.

Comment

Since flexible ligands can modify their conformations as a result of changes in the coordination environment (Goodgame *et al.*, 1999), it is interesting to compare the conformations of free ligands with those adopted in their complexes. In the present paper, we report the crystal structure of the title compound, (I), a flexible bisthioether ligand (bptb).

Compound (I) crystallizes with two half-molecules, A and B, in the asymmetric unit (Fig. 1). In each independent molecule, there is a centre of inversion at the mid-point of the central C-C bond. Each molecule, excluding H atoms, is roughly planar and adopts an all-*anti* conformation (Goodgame *et al.*, 1999). The S-C bond distances and C-S-C angles are comparable with those observed in an analogous compound, 1,8-bis(phenylsulfanyl)octane, which has a similar geometry of the alkyl unit (Chen *et al.*, 2004). The S1 \cdots S1A and S2 \cdots S2B distances are 6.774 (3) and 6.722 (3) Å, respectively. The dihedral angles between the phenyl ring and the butylene backbone are 19.5 (4) and 17.8 (4)° in molecules A and B, respectively.

Comparison of the conformation of bptb in (I) and in the silver(I) perchlorate complex with bptb, (II) (Bu *et al.*, 2002), shows some differences. Although a similarly planar all*-anti* alkyl spacer unit is found in (II), the ligand adopts a confor-

Figure 1

A view of the two independent molecules (A left and B right) of (I). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (A) -x, 2 - y, -z; (B) 1 - x, 1 - y, 2 - z.]

Received 13 May 2005 Accepted 20 May 2005 Online 28 May 2005

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

mation with a slightly longer $S \cdots S$ distance [6.914 (2) Å] and a much larger dihedral angle between the phenyl rings and the backbone chain [91.9 (3)°]. This arrangement may decrease the steric hindrance of ligands around the coordinated Ag^I.

Experimental

1,4-Bis(phenylthio)butane (bptb) was prepared according to the procedure reported by Shao *et al.* (1984) and the product was characterized by NMR, IR and elemental analyses. Colourless single crystals of (I), suitable for X-ray diffraction, were obtained by slow evaporation at room temperature of a solution in chloroform. ¹H NMR (CDCl₃, δ , p.p.m.): 1.78 (*m*, 4H), 2.94 (*t*, 4H), 7.30 (*m*, 10H); FT–IR (KBr pellet, ν , cm⁻¹): 3440 (*m*), 2921 (*s*), 1479 (*m*), 1447 (*m*), 728 (*s*), 683 (*m*). Analysis, calculated for (I): C 70.43, H 6.61%; found: C 70.15, H 6.54%.

Z = 2

Crystal data

 $\begin{array}{l} C_{16}H_{18}S_2 \\ M_r = 274.42 \\ \text{Triclinic, } P\overline{1} \\ a = 5.6753 \ (11) \ \text{\AA} \\ b = 7.7950 \ (16) \ \text{\AA} \\ c = 16.368 \ (3) \ \text{\AA} \\ \alpha = 93.02 \ (3)^\circ \\ \beta = 96.00 \ (3)^\circ \\ \gamma = 90.52 \ (3)^\circ \\ V = 719.1 \ (2) \ \text{\AA}^3 \end{array}$

Data collection

Rigaku R-AXIS RAPID imagingplate diffractometer ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.705, T_{\rm max} = 0.962$ 7153 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.201$ S = 0.963276 reflections 163 parameters $D_x = 1.267 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 7153 reflections $\theta = 3.5-27.5^{\circ}$ $\mu = 0.35 \text{ mm}^{-1}$ T = 293 (2) K Plate, colourless $0.70 \times 0.38 \times 0.11 \text{ mm}$

3276 independent reflections
1978 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.044$
$\theta_{\rm max} = 27.5^{\circ}$
$h = -7 \rightarrow 6$
$k = -10 \rightarrow 10$
$l = -21 \rightarrow 21$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1237P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.39 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.42 \text{ e } \text{\AA}^{-3}$

Table	1		
iunic			

Selected geometric parameters (Å, $^\circ).$

\$1-C3	1.766 (3)	\$2-C11	1.759 (3)
\$1-C2	1.797 (3)	\$2-C10	1.795 (3)
C3-S1-C2	104.38 (13)	C11-S2-C10	104.95 (14)

All H atoms were positioned geometrically, with $Csp^2 - H = 0.93 \text{ Å}$ and $Csp^3 - H = 0.97 \text{ Å}$. They were constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *RAPID-AUTO* (Rigaku, 2004); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (grant No. 20206022).

References

- Bu, X.-H., Chen, W., Hou, W.-F., Du, M., Zhang, R.-H. & Brisse F. (2002). Inorg. Chem. 41, 3477–3482.
- Chen, W., Yin, Q.-X., Xie, C., Wang, J.-K. & Li H. (2004). Acta Cryst. E60, 02147–02148.
- Goodgame, D. M. L., Grachvogel, D. A., Hussain, I., White, A. J. P. & Williams, D. J. (1999). *Inorg. Chem.* 38, 2057–2063.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381, USA.
- Shao, P.-X., Yao, X.-K. & Gu, Y.-X.(1984). Acta Chim. Sinica, 42, 20-25.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.